
Technical Report

CMU/SEI-96-TR-008
ESC-TR-96-008

■ * i -, n.

. ... - '- ■" ;- ■' :"- '■■-.-:.'' '■' - ■ ViÜl

Coming Attractions in Software Architecture

Paul C. Clements

January 1996

Approved fc» pBäie I«1«CHWI I
Dtetelbatioa Uxüimttad |

Carnegie Mellon University does not discriminate and Carneg:e Mellon University is required not to discriminate in admission, employment, or administration
or' its programs or activities on the basis of race, coior, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

in addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal. stale, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of. "Don't ask, don't tell, don't pursue," excludes openly gay. lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, al! ROTC classes a; Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie- Mellon University, 5000 Forbes Avenue. Pittsburgh, PA
15213, teleDhone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue. Pittsburgh. PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-96-TR-008

ESC-TR-96-008

January 1996

Coming Attractions in Software Architecture

Paul C. Clements

Software Architecture Technology Project

OTIC QUALITY INSPECTED 4

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria. VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 5

2. Architecture-Based Development 6

3. Most Promising Work 9

3.1. Architecture Design or Selection 9

3.2. Architecture Representation 12

3.3. Architecture Evaluation and Analysis 13

3.4. Architecture-Based Development and Evolution 14

3.5. Architecture Recovery 15

4. What Do Other Experts Say? 16

4.1. Garlan and Perry 16

4.2. Nierstrasz and Meijler 16

4.3. 1995 Monterey Workshop 16

5. Time Predictions 17

6. Acknowledgments 17

References 19

Coming Attractions in Software Architecture
Abstract: Software architecture is a field of study enjoying unprecedented
growth and interest. This report identifies a set of promising lines of research
related to software architecture and architecture-based system development
that are expected to lead to advances available soon to practitioners. Some of
the goals of software architecture are enumerated, and the investigatory efforts
are structured according to work in the design or selection and creation,
representation, evaluation and analysis, utilization, or legacy recovery of
software architectures. Promising research is described in each area. These
opinions are correlated with those of other experts in the field. Finally, a timeline
for achieving some of the predicted results is offered.

1. Introduction

This technical report identifies a set of promising lines of research in the field of archi-
tecture-based software development that are expected to lead to advances that will be
available to practitioners over the next five to ten years. Most members of the set are
based upon current (but embryonic) efforts in the field; a few are based on the judge-
ment of the author. Promising areas are defined to be those that seem to hold potential
for most positively affecting the development and evolution processes for large-sys-
tem software over the next ten years or so, and which are now the subject of only lim-
ited or localized work. It was felt that focusing on under-explored areas would be of
more interest to the community than treating widespread efforts. Thus, if an area of
research is not mentioned, the implication is that the current effort in that area is pro-
ceeding apace, not that it is a poor bet. An example of the latter is architecture descrip-
tion language (ADL) development, currently being prosecuted to good effect by over
a dozen research efforts.

Since this report attempts to summarize a changing field, it is intended to be living; it
will be updated at regular intervals. Comments are invited and suggestions for inclu-
sions are welcome and solicited. Please contact the author via electronic mail at

swarch@sei.cmu.edu

Before describing promising research in any field, it is necessary to submit a world
view or vision toward which the field is or should be progressing, and against which
work in progress may judged. Section 2 provides a glimpse of such a world view, pro-
posing that the promise of software architecture may be viewed as facilitating the fol-
lowing capabilities, each of which can lead to significant improvement in the
development and deployment of large-scale system software:

• component-based development

• early quality prediction

• product line development

• separation of functionality from interconnection

• constraining the design space

Section 3 discusses some of the most promising work towards achieving that world
view. Section 4 describes the current research agenda as seen by other experts in the
field. Section 5 proposes a time frame to each development suggested in Section 3.

2. Architecture-Based Development

Software architecture is, roughly, a view of a system that includes the system's major
components, the behavior of those components as visible to the rest of the system,
and the ways in which the components interact and coordinate to achieve the system's
mission. The architectural view is an abstract view, bringing with it the higher level of
understanding, and suppression and deferral of detail inherent in most abstractions.

The study of software architecture, although recently enjoying significant impetus, is
in large part rooted in a study of software structure that began in 1968 with Edsger Dijk-
stra's landmark operating system paper. Dijkstra pointed out that it pays to be con-
cerned with how software is partitioned and structured, as opposed to simply
programming so as to produce a correct result [Dijkstra 68]. David Parnas pressed this
line of observation with his contributions concerning information-hiding modules, soft-
ware structures, and program families, all of which stressed qualities of software mea-
surable in terms of economies to the development and maintenance processes
[Parnas 72, Parnas 74, Parnas 76].

All of the work in the field of software architecture can be seen as evolving toward a
paradigm of software development based on principles of large-scale, component-
based system construction, and for exactly the same reasons given by Dijkstra and
Parnas: structure matters. Choosing an appropriate structure, with appropriate coordi-
nation mechanisms among the structural parts, yields economies of production with-
out sacrificing required performance or correctness attributes. This paradigm has not
yet crystallized into a codified form, but the work seems to reflect a systematic belief
in the following tenets, some of which remain speculative:

• Systems can be built in a rapid, cost-effective manner by importing (or
generating) large externally developed components. Former software
paradigms have focused on programming as the prime activity, with progress
measured in lines of code. Architecture-based development focuses on
assembling components that are likely to have been developed separately,
even independently, from each other. Integration becomes the critical activity.

Areas of current investigation addressing this tenet include large-scale
software reuse, component-based development, COTS system
development, COTS system integration, interface standards and
specification work, parameterized programming, and infrastructural
frameworks into which components can be inserted.

• It is possible to predict certain qualities about a system by studying its
architecture, even in the absence of detailed design and code.
Performance is largely a function of the frequency and nature of inter-
component communication, in addition to performance characteristics of the

components themselves, and hence can be predicted by studying the
architecture of a system1. A non-runtime quality attribute such as
maintainability is largely a function of the locality of anticipated changes,
which can be catalogued in terms of which architectural components such
changes would affect.

Work in architectural analysis and modelling techniques exemplifies this tenet
[Kazman 94].

• Entire product lines can be developed by sharing a common
architecture. Large-scale reuse is possible through architectural-level
planning. Product lines are groups of related systems that, together, fill a
market niche. They are derived from what Parnas referred to in 1976 as
program families [Parnas 76]. Parnas wrote that a fielded system is a leaf in
a decision tree, where each node represents a design decision. Deriving a
second instance of the system involves, at best, backing up to the lowest
common decision point and re-traversing to reach the new leaf. At worst, it
means starting over. Therefore, it pays to carefully order the design decisions
one makes so that the most likely to be changed occur latest in the process.
In an architecture-based development of a product line, one chooses an
architecture (or a family of closely related architectures), and a set of generic
components that will serve all or nearly all envisioned members. These
choices represent decisions near the top of Parnas's decision tree. Variations
among members are handled by late binding of parameters, swapping in
interchangeable components, etc.2

The work in domain analysis, domain engineering, component-based design
methodologies, and reuse all support this tenet of the paradigm. Work
defining disciplined, architecture-based evolution strategies also comes into
play because it regards the system before and after a change as two
separate, but closely related, members of the same program family.

• The functionality of a component can be separated from its component
interconnection mechanisms for good reasons. Traditional design
approaches have been primarily concerned with the functionality of

1. Some may ask if software performance is not a function of the speed of the underlying hardware and thus
unpredictable with only a software architecture. The answer is not always. Sometimes performance is dic-
tated by external requirements. For example, a display may be required to be updated every 30 milliseconds
because that is the rate at which humans perceive continuous motion from discrete frames. This in turn will
determine the performance requirements for the software components that prepare the data and drive the
display. These performance constraints may be only loosely tied to capabilities of specific hardware; the soft-
ware components perform in step with a real-time clock, rather than as fast as the hardware allows Only a
loose assumption about the hardware—namely, that the hardware is sufficiently speedy to allow the compo-
nents their necessary real-time performance—is required. The looser the ties to the hardware the more fidel-
ity architecture-level performance predictions will have. On the other hand, in systems where performance is
tightly constrained, it is more likely that hardware decisions will be made early on, in which case that informa-
tion can be used to aid in early performance predictions.
2. Note that application generators circumvent this tenet to some extent. With an application generator early
design decisions are no longer the hardest to change, since the automation provided by the generator obvi-
ates the cost of the change. Also, Section 3.2 discusses an architecture-based development environment that
allows rapid revision of architecture-level decisions.

components. Architecture work seeks to add a second concern: how a
component interacts, coordinates, cooperates, and communicates with other
components. The stated goal is to recognize the different fundamental
qualities imparted to systems by these various interconnection strategies and
to encourage informed choices. However, the result is a separation of
concerns, which introduces the possibility of building architectural
infrastructure to automatically implement the architect's eventual choice of
mechanism. The binding of this decision may be delayed and/or easily
changed3. Thus, prototyping and large-scale system evolution are both
supported. Although proponents of this view speak of "first-class connectors,"
they are actually making it possible for the question of connectors to be
ignored, or at least deferred, in many cases [Shaw 94]. This contrasts to the
programming paradigm, where connection mechanisms are chosen very
early in the design cycle, without much thought, and are nearly impossible to
change. Areas addressing this aspect include architecture description
languages that embody connection abstractions, as opposed to mechanisms.

Supporting work in this area includes design of architecture description
languages, specification of component interfaces (especially thread-of-
control aspects), formal models of composition and interconnection, and
those languages and/or environments that feature automatic "glue code"
generation. For an example of a formal model of composition, see
"Correctness and Composition of Software Architectures," [Moriconi 94].

► Less is more: it pays to restrict the vocabulary of design alternatives.
David Garlan and Mary Shaw's work in cataloguing architectural styles
teaches us that, although computer programs may be combined in more or
less infinite ways, there is something to be gained by voluntarily restricting
ourselves to a relatively small set of choices when it comes to program
cooperation and interaction [Garlan 93]. Advantages include enhanced
reuse, more capable analysis, shorter selection time, and greater
interoperability.

ADLs and case study work both support this aspect by helping to identify
useful members of a restricted vocabulary. Architecture analysis and
evaluation techniques also apply because they help developers choose
among alternatives. The blossoming design pattern community is a lower
level offshoot of this tenet, giving us ways to describe and represent patterns
of interaction among a set of components. Finally, work in the theory of
component interfaces helps identify the information channels across which
components interact.

3. Mechanisms may include subroutine invocation with parameters, subroutine invocation with global data,
implicit invocation via event-signalling, implicit invocation via blackboard, any flavor of process synchroniza-
tion, and others. For examples, see "Formalizing Architectural Connection," and A Taxonomy of Coordination
Mechanisms Used in Real-Time Software Based on Domain Analysis [Allen 94, Fernandez 93].

3. Most Promising Work

Problem areas in architecture tend to be clustered around the following five themes
arranged in terms of designing, building, and maintaining or evolving a system based
on its architecture:

• Architecture design or selection: How to create or select an architecture
based on a set of functional, performance, and quality requirements.

• Architecture representation: How to communicate an architecture. This
problem has manifested itself as one of representing architectures with
linguistic facilities, but the problem also includes selecting the set of
information to be communicated; that is, represented with a language.

• Architecture evaluation and analysis: How to analyze an architecture to
predict qualities about systems that manifest it. A similar problem is how to
compare and choose between competing architectures.

• Architecture-based development and evolution: How to build and
maintain a system given a representation of what is confidently believed to be
a sound architecture that will solve the problem at hand. The components
may or may not already exist; if so, they may or may not be initially compatible
with each other.

• Architecture recovery: How to evolve a legacy system when changes may
affects its architecture; for systems lacking trustworthy architectural
documentation, this will first involve "architectural archaeology" to extract its
architecture.

We will discuss each area in turn.

3.1 Architecture Design or Selection

Technologies to support the creation or selection of an architecture for a system can
be seen to exist along a spectrum, shown in Figure 1. At one end are ad hoc tech-
niques, in which experienced and/or talented designers conjure up an architecture in
a largely unrepeatable fashion. Farther up the spectrum lie reuse techniques, from
previously used architectures, to architectures populated with reusable components,
to architectures populated with tailorable and parameterized components. Architec-
tures based on frameworks such as MacApp (a development environment for Macin-
tosh application programs) or the CORBA object management architecture (OMA) lie
in this region [Object Management Group 95]. They offer differing levels of "plug-in-
and-run" completeness and application independence, but both provide their own ar-
chitectural reference models and support those models with executable software com-
ponents. At the high end of the spectrum lie partial and pure application generators.
An application generator is a program that incorporates knowledge about the relevant
application domain and, given as its input a set of requirements for a particular mem-

10

ber of that domain, generates software that implements that domain member. A pure
application generator produces a turnkey system and renders moot the question of ar-
chitecture to the user of the generator. Less encompassing generators produce com-
ponents that must be integrated into the eventual system; the Unix-based parser
generator YACC is an example.

Low technology High technology

Ad hoc

Reusable
Styles Reusable architectures

kit architectures with component
libraries

Reusable
architectures

with
parameterized
components

Partial
system

generators

Pure
application
generators

Figure 1: Technology spectrum for architecture selection and creation

Promising work in this area consists of case studies and application generator tech-
nology.

Case studies: For approaches that are not ad hoc to be successful, experience must
be gained in building reusable architectures in a particular "architecture domain" 4.
Central to this work is understanding the relationship between requirements and archi-
tecture; in particular, understanding how a system is "driven" into a particular architec-
ture domain. What role do quality requirements play? Performance requirements?
Organizational history or constraints? Case studies can provide insight into how re-
quirements and context interact with each other in order to produce an architecture.

As case studies are promulgated, the following results can be expected:

• Agreement will emerge as to a taxonomy of systems' problem spaces. A
gross taxonomy can be said to exist today. Is a system hard-real time or not?
Is it required to be distributed or not? These and other coarse-grained
discriminators that currently exist may be seen to fundamentally affect the
type of system fielded, and will evolve to more sophisticated and fine-grained
characterizations of the problem space in the future. Jackson's work on

4. Unlike an application domain, which refers to a customer- or user-oriented set of products, such as avion-
ics programs, an architecture domain refers to a set of programs implementable via the same architectural
pattern, interconnection mechanisms, etc. Some avionics programs may be implemented with a single-pro-
cessor timing-loop structure; others may be highly parallel with message-passing interaction. These exam-
ples represent two different architecture domains, each of which may be populated by other systems from
different application domains.

11

problem frames is a start in this direction [Jackson 94a]. Application-specific
problem taxonomies are also emerging, such as "A Taxonomy of Computer
Program Security Flaws," [Landwehr 94].

• Agreement will emerge as to a taxonomy of systems' context space. What are
the organizational influences on architecture? What effect does the prior
experience of senior designers have? As these and other influences emerge
and are systematically captured, business case strategies can be built based
on an organization's technical background, infrastructure, and capability.

• Agreement will emerge as to a taxonomy of systems' solution spaces. The
work in architectural styles and solution viewpoints represents early
promising work, as do taxonomies of coordination mechanisms [Perry 92,
Garlan 93, Shaw 95, Fernandez 93]. Work in finding, capturing, formalizing,
and exploiting design patterns, and identifying supporting technology for
pattern-based development, also represents an important approach that is
young but growing in importance. For examples, see "Patterns Generate
Architectures," and Design Patterns, Elements of Object-Oriented Software
[Beck 94, Gamma 95].

In theory, case study work could converge into production of design guidebooks, like
those found in other engineering disciplines and which seem to be emerging in the de-
sign patterns community. The goal is to produce systematic, reliable design guidance:
assistance in asking appropriate architecture-determining questions about require-
ments and being directed to architectures or architectural decisions that plausibly
solve the problem. For example, see Software Architectures for Shared Information
Systems [Shaw 93].

Application generator technology: In order to produce a pure application generator
for a domain, an alphabet of primitive components must be built to be combinable in
flexible, arbitrary ways. Component identification, component composition, and map-
ping to a given physical architecture are the driving problems. Currently, a leader in
application generator technology is represented by the GenVoca method [Batory 94,
Beck 94]. GenVoca has an innovative approach to component composition and has
been successfully applied to various application domains. Component identification is
currently ad hoc. The codification of this part of the process, by marrying domain anal-
ysis methods with architecture component identification, should produce a dramatic
improvement in our ability to build generators for domains for which such a possibility
was only recently unthinkable. For example, the existence of parser generators, opti-
mization generators, program flow graph generators, and the like renders it unthink-
able to build a compiler from scratch today. Similarly, it may soon be the case that
nobody will ever build from scratch an avionics programs, a database management
system, a military command center, or a software engineering environment because
of the existence of generators to produce application-standard components attached
to an application-standard architectural framework. Promising generator work includes

12 " "

the construction of generator generators, generators with user-level interfaces (includ-
ing graphical specification languages), and generators that allow a declarative speci-
fication of the target computing environment.

3.2 Architecture Representation

A system's architecture serves many stakeholders and it must be communicated to
each of them. For example, no matter how components are chosen, that architectural
choice becomes immortalized in the developing organization's work breakdown struc-
ture, team assignments and structure, unit test plans, integration test plans, project
schedule, and maintenance and evolution plans. The architecture provides the medi-
um for inter-team cooperation and communication. It serves as the basis for early
modelling, evaluation, and prediction of performance, schedulability, feasibility, and
resource allocation.

Communicating an architecture to a stakeholder becomes a matter of representing it
in an unambiguous, readable form that contains the information appropriate to that
stakeholder. While development of architecture languages is proceeding apace—
there are at least two dozen languages capable of, if not developed explicitly for, rep-
resenting architectural information—there is less attention being paid to the following
areas:

Infrastructures to support ADL development. Most ADLs share a set of common
concepts. Building tools to support an ADL involves solving a common set of prob-
lems. Development of an ADL development environment would facilitate the rapid pro-
duction of ADLs and supporting tools, thus allowing good ideas to come to market
faster. Garlan's Aesop/ACME work represents an important contribution to this area,
as do efforts to formalize what we mean by architecture so that representation and rep-
resentation-based analysis capabilities in languages can be enhanced [Garlan 94, In-
verardi 95].

Integration of ADL information with other life-cycle products. As ADLs mature,
they will take a more prominent role in the litany of life-cycle products (such as detailed
design documents, test cases, etc.). Encouragement should be given to early consid-
eration of the relationship that an architecture description (and the ADL tool to render
it) will bear to these other documents (and the tools that produce/maintain them). For
example, what test cases might be generated for a system based on a description of
its components and interconnection mechanisms? What kind of and how much exe-
cutable code can be automatically generated? How can traceability of architecture to
requirements be established? How can architectural patterns, like design patterns, be
rapidly imported into the architecture [Gamma 95]? This work could culminate in the
complete integration of architecture descriptions into the development environment,

_ __

giving rise to a sort of "architectorium." This can be thought of as an exploration envi-
ronment in which architectures are drafted, validated via mapping to requirements,
their implications explored via analysis or rapid prototyping, alternatives suggested in
an expert-system-like fashion, and project infrastructures necessary for development
(e.g., work schedule templates, component-based configuration control libraries, test
plans, etc.) are generated.

3.3 Architecture Evaluation and Analysis

One of the promises of architecture as a field of study is that it is possible to predict
qualities of a finished system just by studying its architecture. If this is true, then it will
ameliorate the syndrome whereby validating early design decisions occurs only when
it's too late to change them. Two aspects of this problem are ripe for breakthrough
work.

Quantification of functional and afunctional qualities. An architecture is chosen
because it achieves functional properties (behavioral, performance, security, etc.) and
afunctional properties (the ability to support maintenance and evolution, product line
building, and low time-to-market development) that are important to the developer. In
order to evaluate an architecture against attributes of significance, it must be possible
to express those attributes in a quantitative way. Current evaluation methods such as
SAAM finesse the issue through the use of scenarios; quality attributes are never ex-
pressed directly at all [Kazman 94]. To see if an architecture is maintainable, an archi-
tect poses a set of specific change scenarios and evaluates the architecture against
each of those. (Performance benchmarks are the runtime analogy to scenarios, point-
ing out the absence of believable generic performance metrics.)

Practical verification strategies. A number of environments exist in which an archi-
tectural rendition can be used to generate a simulation of the system. For example,
see "Partial Orderings of Event Sets and Their Application to Prototyping Concurrent!
Timed Systems," [Luckham 93]. However, simulation is inherently a weak validation
tool in that it only presents a single execution of the system at a time; like testing, it can
only show the presence rather than absence of faults. More powerful are verifiers or
theorem provers that are able to compare a desired safety assertion against all possi-
ble executions of a program at once. Current generation verifiers, such as the one that
supports Modechart, are limited in power because they suffer from state-explosion
problems, rendering them useful only for small problems or subsets of actual systems
[Jahanian 86, Jahanian 94]. Inroads are being made, but progress must continue
[Burch 90, Jackson 94]. Theorem provers are labor intensive and are limited in scope.
Work to make proof of correctness practical for large systems is vital. Given an archi-
tecture (in the form of components, connections, functional and performance informa-

14

tion about the components, and built-in semantic knowledge about connector types) a
verifier could assure developers that performance requirements, deadline satisfaction,
resource utilization constraints, and security and invariant safety conditions were all
achievable, or point out places in the architecture where they were not.

3.4 Architecture-Based Development and Evolution

Given a satisfactory architecture, a system must still be built that reflects that architec-
ture with complete integrity and fidelity. Besides the "architectorium" environment
mentioned earlier, one other area of investigation offers special promise.

New architecture-based design methods. Architecture-based design represents a
development paradigm that differs in fundamental ways from current alternatives; in
many ways, it is as different as object-oriented development (OOD) was from its pre-
decessors. OOD plays host to a rich community of methodologists and practitioners,
trading information about application and practice of object-oriented technology. Archi-
tecture-based technology will need to nurture a similarly fertile "thought environment"
by establishing a culture in which architectural issues and ideas flourish. Workshops
with architectural themes are a start. For example, see "First International Workshop
on Architectures for Software Systems" [Garlan 95a]. A technical issue that will need
to be addressed early is crafting a precise articulation of (possibly more than one) ar-
chitecture-based design paradigm and working out the associated process issues. An
example of a new paradigm is represented by the adaptive programming approach of
Demeter [Lieberherr 96].

Component interfaces. Currently, the interface to a component is largely a collection
of syntactic information (names of method programs, type and number of parameters,
etc.) with scant semantic information (global data affected, exceptions possibly raised,
and some informally expressed description of what the component does). This infor-
mation is wholly inadequate to effectively use a component that was developed out-
side the scope of the using project. Performance information, security information,
reliability information, assumptions about threads of control, assumptions about sup-
porting facilities present elsewhere in the system at compile-time or link-time or run
time, and other critical information is required and practically never provided. Work is
needed to categorize interface information, aim it to specific audiences that each have
different needs, understand when each type is needed, and explore how to best ex-
press it.

3.5 Architecture Recovery

Given a legacy system without an architecture description, how can changes be made
that will not corrupt the design? What if a needed change is so severe that it cannot

15

be performed within the framework of the given architecture? Work is needed to ma-
ture the following areas:

Architecture archaeology. Reliable technology is needed to identify components of
different types, for example, processes, modules, objects, and the ways in which they
interact with each other. Object finders are an example of this. Program dependency
graph generators (used extensively in optimizing compilers) are another example that
might be modified to help uncover an architecture. In principle, tools like this often en-
counter computational complexity problems that will prevent total solutions. However,
work can certainly be done to solve special cases of the problem and to understand
what kind of programmer-provided annotations will help make the problem tractable.
For example, a program's call- or data-flow graph typically looks radically different
(and much more organized) if the exception-handling flows are removed. Annotations
could help identify such cases. Another promising approach is the middle-of-the-road
line taken by Murphy, Notkin, and Sullivan, in which automation does not recover an
architecture but checks a human user's assertion (or guess) about the architecture
[Murphy 94].

Architecture migration technology. Work is needed to understand, given an archi-
tecture, what changes it will support and what changes are outside its scope. For out-
of-scope changes, technology is needed that will provide disciplined, orderly ways to
evolve an architecture. Fluid architectures are an example of this: if the responsibilities
of one component could be migrated to another in an orderly fashion, perhaps such a
migration could accommodate the change, salvage the architecture obviating the need
to start over, and still result in an architecture that resembled the earlier one and was
orderly instead of ad hoc [Scherlis 94, Scherlis 95]. Also needed is an understanding
about "closeness of fit," to handle the case where components are almost, but not
quite, compatible with each other. Finally, standard engineering practices must be
found that migrate the out-of-line components into the dominant architectural frame-
work.

16

4. What Do Other Experts Say?

4.1 Garlan and Perry

David Garlan and Dewayne Perry wrote a guest introduction for the April 1995 issue
of IEEE Transactions on Software Engineering that was devoted to software architec-
ture that outlines the most promising research areas [Garlan 95b]. David Garlan re-
issued the list in the June 1995 ACM Computing Surveys [Garlan 95c]. The list con-
sists of the following:

• architectural description languages

• formal underpinnings of software architecture (mathematical foundations,
formal characterization of extra-functional properties such as maintainability,
theories of interconnection, etc.)

• architectural analysis techniques

• architectural development methods

• architecture recovery and reuse

• architectural codification and guidance

• tools and environments for architectural design

• case studies

4.2 Nierstrasz and Meijler

Nierstrasz and Meijler identify three important areas of work in component-based de-
velopment [Nierstrasz 95]. These areas are rather coarse-grained, but nevertheless
correlate well with other views:

• composition models (e.g., for describing component frameworks or
interaction mechanisms)

• composition languages

• tools and methods

4.3 1995 Monterey Workshop

Finally, the 1995 Monterey Workshop on Formal Methods and Software Architecture,
held at the Naval Postgraduate School, concluded that directions for future research
included "investigating methods for effectively representing design rationale so that it
can be used to provide automated decision support. Some issues mentioned were
how to capture design knowledge and how to model design decisions." [Berzins 95]

17

18

5. Time Predictions

This section, byway of Figure 2, predicts progress in each of the discussed areas over
a five- to ten-year period. Its purpose is mostly to stimulate discussion about likely
paths to achieve the goals. It should not be viewed as a claim to clairvoyance on the
part of the author.

95 96 97 98 99

-— First all-new ADL

00

Application

extracted

to

Architectures routinely ^nd reliably
 om legacy

systems
automatically f

01

Guidebooks widely

02 03

precedentep-system problems

generator technology
married wiljh domain analysis to

"mature" app
generator generators

built us

— ADL with powerful

cornponen

Automated tools and envjironmeihts
suppoijt architecture evolution/migraton

ng common ADL infrastructure

Agreement on intejrface specifications for!
as a standard s, perhaps manifested

04

used forsolvirg

ication

large-scale ver fier

Figure 2: A possible timeline for coming attractions in architecture

6. Acknowledgments

Within the SEI, thanks go to Len Bass, Pat Donohoe, Rick Kazman, Mark Klein, and
Craig Meyers for reviewing early versions of this paper; Kurt Wallnau and Michael
Rissman provided especially thorough reviews.

Thoughtful external reviews were provided by Bob Balzer, Don Batory, David Garlan,
Paul Kogut, Karl Lieberherr, Dewayne Perry, Mary Shaw, Walter Tichy, Bruce Weide,

19

and Alex Wolf. David Garlan pointed out the limitations of the connector-interchange
idea presented in Section 2. Sincere thanks go to all.

20

References

[Allen 94] Allen, R., & Garlan, D. "Formalizing Architectural Connection,"
71-80. Proceedings of the 16th International Conference on
Software Engineering. Sorrento, Italy, May 16-21,1994. Los
Alamitos: IEEE Computer Society Press, 1994.

[Batory 92] Batory, D., & O'Malley, S. "The Design and Implementation of
Hierarchical Software Systems with Reusable Components."
ACM Transactions on Software Engineering and Methodology
1, 4 (October 1992): 355-398.

[Batory 94] Batory, D.; Singhal, V.; Thomas, J.; Dasari, S.; Geraci, B.; &
Sirkin, M. "The GenVoca Model of Software-System Genera-
tors." IEEE Software 11, 5 (September 1994): 89-94.

[Beck 94] Beck, K. & Johnson, R. "Patterns Generate Architectures,"
139-149. Proceedings of the 8th European Conference on
Object-Oriented Programming. Bologna, Italy, July 4-8,1994.
Berlin: Springer-Verlag, 1994.

[Berzins 95] Berzins, V. & Shing, R. "Summary of the '95 Monterey Work-
shop—Specification-Based Software Architectures," 107-112.
Proceedings of the 1995 Monterey Workshop on Formal
Methods and Software Architecture. Monterey, Calif., Sep-
tember 12-14, 1995. Monterey: U.S. Naval Postgraduate
School, 1996.

[Burch 90] Burch, J.; Clarke, E.; McMillan, K.; Dill, D.; & Hwang, L. "Sym-
bolic Model Checking: 1020 States and Beyond," 428-439. Pro-
ceedings of the Fifth Annual IEEE Syhmposium on Logic in
Computer Science. Philadelphia, Pa., June 4-7, 1990. Los
Alamitos: IEEE Computer Society Press, 1990.

[Dijkstra 68] Dijkstra, E. W. "The Structure of the T.H.E.' Multiprogram-
ming system." Communications of the ACM 26, 1 (January
1983): 49-52.

21

[Fernandez 93] Fernandez, J. A Taxonomy of Coordination Mechanisms
Used in Real-Time Software Based on Domain Analysis
(CMU/SEI-93-TR-34, ADA279014). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1993.

[Gamma 95] Gamma, E;, Helm, R.; Johnson, R.; & Vlissides, J. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, Mass.: Addison-Wesley, 1995.

[Garlan 93] Garlan, D. & Shaw, M. "An Introduction to Software Architec-
ture," Advances in Software Engineering and Knowledge En-
gineering vol. I, River Edge, N.J.: World Scientific Publishing
Company, 1993.

[Garlan 94] Garlan, D.; Allen, R.; & Ockerbloom, J. "Exploiting Style in Ar-
chitectural Design Environments." SIGSOFT Software Engi-
neering Notes 19, 5 (December 1994): 175-188.

[Garlan 95a] Garlan, D. "First International Workshop on Architectures for
Software Systems." SIGSOFT Software Engineering Notes
20, 3 (July 1995): 84-89.

[Garlan 95b] Garlan, D. & Perry, D. "Introduction to the Special Issue on
Software Architecture." IEEE Transactions on Software Engi-
neering 21, 4 (April 1995): 269-274.

[Garlan 95c] Garlan, D. "Research Directions in Software Architecture."
ACM Computing Surveys 27, 2 (June 1995): 257-261.

[Inverardi 95] Inverardi, P. & Wolf, A. "Formal Specification and Analysis of
Software Architectures Using the Chemical Machine Abstract
Model." IEEE Transactions on Software Engineering 21, 4
(April 1995): 373-386.

[Jackson 94a] Jackson, M. "Problems, Methods, and Specialization." IEEE
Software 11, 6 (November 1994): 57-62.

22

[Jackson 94b] Jackson, D. "Abstract Model Checking of Infinite Specifica-
tions," 519-531. Proceedings of The Second International
Symposium of Formal Methods Europe. Barcelona, Spain,
October 24-28, 1994. Berlin: Springer-Verlag, 1994.

[Jahanian 86] Jahanian, F. & Mok, A. "Safety Analysis of Timing Properties
in Real-Time Systems." IEEE Transactions on Software Engi-
neering SE-12, 9 (September 1986): 890-904.

[Jahanian 94] Jahanian, F. & Mok, A. "Modechart: A Specification Language
for Real-Time Systems." IEEE Transactions on Software En-
gineering SE-20, 12 (December 1994): 933-947.

[Kazman 94] Kazman, R.; Abowd, G.; Bass, L; & Webb, M. "SAAM: A
Method for Analyzing the Properties of Software Architec-
tures," 81-90. Proceedings of the 16th International Confer-
ence on Software Engineering. Sorrento, Italy, May 16-21,
1994. Los Alamitos: IEEE Computer Society Press, 1994.

[Landwehr 94] Landwehr, C; Bull, A.; McDermott, J.; & Choi, W. "A Taxono-
my of Computer Program Security Flaws." ACM Computing
Surveys 26, 3 (September 1994): 211-254.

[Lieberherr 96] Lieberherr, K. Adaptive Object-Oriented Software: The Deme-
ter Method with Propagation Patterns. Boston, Mass.: PWS
Publishing Company, 1996.

[Luckham 93] Luckham, D.; Vera, J.; Bryan, D.; Augustin, L; & Beiz, F. "Par-
tial Orderings of Event Sets and Their Application to Prototyp-
ing Concurrent, Timed Systems." Journal of Systems and
Software 21, 3 (June 1993): 253-265.

[Moriconi 94] Moriconi, M. & Qian, X. "Correctness and Composition of Soft-
ware Architectures." SIGSOFT Software Engineering Notes
19, 5 (December 1994): 164-174.

23

[Murphy 94] Murphy, G.; Notkin, D.; & Sullivan, K. Reflecting Source Code
Relations in Higher-Level Models of Software Systems (TR-
94-09-93). Seattle, Wash.:University Of Washington, Depart-
ment of Computer Science and Engineering, September
1994.

[Nierstrasz 95] Nierstrasz, O. & Meijler, T. D. "Research Directions in Soft-
ware Composition." ACM Computing Surveys 27, 2 (June
1995): 262-264.

[Object Management Group 95]Object Management Group, Object Management Architecture
Guide. Third edition, New York, N.Y.: John Wiley & Sons, ,
1995.

[Parnas 72] Parnas, D. "On the Criteria for Decomposing Systems into
Modules." Communications of the ACM 15, 12 (December
1972): 1053-1058.

[Parnas 74] Parnas, D. "On a 'Buzzword': Hierarchical Structure," 335-
342. Programming Methodology, Berlin, West Germany:
Springer-Verlag, 1978.

[Parnas 76] Parnas, D "On the Design and Development of Program Fam-
ilies." IEEE Transactions on Software Engineering SE-2, 1
(March 1976): 1-9.

[Perry 92] Perry, D. & Wolf, A. "Foundations for the Study of Software Ar-
chitecture." ACM SIGSOFTSoftware Engineering Notes 17,4
(October 1992): 40-52.

[Scherlis 94] Scherlis, W. "Boundary and Path Manipulations on Abstract
Data Types," IFIP Transactions A (Computer Science and
Technology) vol. A-5, Netherlands, 1994.

[Scherlis 95] Scherlis, W. "Fluid Architecture and Semantics-Based Manip-
ulations of Types," Dagstuhl Workshop on Software Architec-
tures, February 1995.

24

[Shaw 93] Shaw, M. Software Architectures for Shared Information Sys-
tems (CMU/SEI-93-TR-3, ADA266995). Pittsburgh, Pa.: Soft-
ware Engineering Institute, Carnegie Mellon University, 1993.

[Shaw 94] Shaw, M. Procedure Calls Are the Assembly Language of
Software Interconnection; Connectors Deserve First-Class
Status (CMU/SEI-94-TR-02, ADA281026). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University,
1994.

[Shaw 95] Shaw, M. "Making Choices: A Comparison of Styles for Soft-
ware Architecture." IEEE Software 12, 6 (November 1995):
27-41.

25

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-008
5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-96-008

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
HanscomAFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

Coming Attractions in Software Architecture

12. PERSONAL AUTHOR(S)
Paul C. Clements

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

January 1996
15. PAGE COUNT

23
16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.
18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

software architecture, architecture evaluation,
architecture case studies, application generators, architecture description
languages, architecture recovery

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Software architecture is a field of study enjoying unprecedented growth and interest. This report iden-
tifies a set of promising lines of research related to software architecture and architecture-based sys-
tem development that are expected to lead to advances available soon to practitioners. Some of the
goals of software architecture are enumerated, and the investigatory efforts are structured according
to work in the design or selection and creation, representation, evaluation and analysis, utilization,
or legacy recovery of software architectures. Promising research is described in each area. These
opinions are correlated with those of other experts in the field. Finally, a timeline for achieving some

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED | SAMEASRPTfJ DTJ.C USERS |

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/ENS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ABSTRACT — continued from page one, block 19

of the predicted results is offered.

